Q) In the New Document dialog box, on the General tab, for type, choose Flash Document, then click _________ . --> Ok
Q) Specify the export ________ for classes in the movie. --> Frame
Q) To help manage the files in a large application, Flash MX professional 2004 supports the concept of ________ . --> Projects
Q) In the AppName directory, create a subdirectory named ________ . --> Source
Q) In Flash, most applications are ________ and include ________ user interfaces. --> Visual, Graphical
Q) Test locally by opening ________ in your web browser. --> AppName.html
Q) The AppName directory will contain everything in our project, including ________ and ________ . --> Source code, Final output
Q) In the AppName directory, create a subdirectory named ________ . --> Deploy
Q) Every Flash application must include at least one ________ . --> Flash document
Q) In the AppName/Source directory, create a subdirectory named ________. --> Com
Q) In the AppName/Source/Com directory, create a sub directory named ________. --> Com
Q) A project is group of related ________ that can be managed via the project panel in the Flash.

--> Files
Q) With CurrencyConverter.fla opens in the Flash authoring tool, select window → __________ components. --> Development Panels.
Q) We’ll start our CurrencyConverter by invoking main () on our application's primary class, ________. --> CurrencyConverter
Q) The deploy and source folders are both subdirectories of ________. --> CurrencyConverter
Q) Our exported application is named ________. --> CurrencyConverter.swf
Q) To create instances of components at runtime, Flash requires to add the components to the ________ library during authoring. --> CurrencyConverter.fla's
Q) ________ application is a simple currency converter. --> GUI
Q) Our applications only class is ________. --> CurrencyConverter
Q) Double-click the new layer and rename it ________. --> Load components
Q) The ________ class handles the actual creation of component instances in our application. --> CurrencyConverter
Q) Not all component classes reside in the ________ package. --> mx.controls
Q) CurrencyConverter invokes ________. --> BuildConverter
Q) To determine the package for a ________ class, consult its entry in Flashe's built-in Components Dictionary. --> Component
Q) The applications primary class, CurrencyConverter, is also the class that defines the ________. --> Main ()
Q) The classes for containers such as window and scroll pane reside in the ________ package. --> mx.containers
Q) The ________ method is a class because it is invoked once for the entire application and is not associated with a particular instance. --> Main()
Q) The movie clip and components created by ________. --> buildConverter
Q) The CurrencyConverter instance created by ________. --> Main ()
Q) The event handlers use the thisConverter variable to access the current ________ instance. --> CurrencyConverter
Q) The ________ class, you can use the rewritten version of Mike chamber's original class. --> CurrencyConverter
EventProxy
Q) The CurrencyConverter interface is created by the _______. --> buildConverter
Q) BuildConverter stores a reference to the current object in a local variable named _______. --> thisConverter
Q) _______ instances support the properties _x and _y, _width, and _height. --> MovieClip
Q) The ConvertButton can reference the current CurrencyConverter instance via the local variable _______. --> thisConverter
Q) Converter_mc._x = _______; --> x
Q) Converter_mc._y = _______; --> y
Q) The _______ method returns a reference to the newly created component -->

Createclassobject
Q) An event listener object to receive events from the _______ instance. --> TextInput
Q) The _______ class is subclass to movieClip class. --> Avatar
Q) A Login Symbol movie Clip symbol that contains two text fields _______ and _______. --> UserName, Password
Q) Creating a new kind of generic multimedia class that uses most or all of the features of _______. --> MovieClip
Q) The _______ community uses the term movieClip to refer to both movieClip instances on stage and movieClip symbols in the library. --> Flash
Q) The ChatRoom constructor creates an instance of the ChatRoomSymbol movieClip symbol and stores it in the property _______. --> Chat_mc
Q) The RandomAvatar class as a subclass of the _______ class. --> Avatar
Q) _______ is a self-contained multimedia object with a timeline for changing state. --> movieClip
Q) _______ can contain graphics, video, and audio. --> movieClip
Q) The Avatar class does not inherit from MovieClip. Instead, it creates an instance of AvatarSymbol and stores it in an instance property _______. --> av_mc
Q) A TextInput component for _______ messages. --> Outgoing
Q) A _______ component for incoming messages. --> TextArea
Q) Which of the following is not belongs to variable length coding (VLC). --> LZW Algorithm
(Lempel - Ziv - Welch)
Q) One way to address the integral codeword length is to group several symbols and assign a single codeword in the group. Huffman coding of this type called_____. --> Extended Huffman Coding
Q) _______ [the information source we wish to compress has the property that symbols tend to form continuous groups] instead of coding each symbol on the group individually, we code one such symbol and the length of the group. --> Run - Length Coding
Q) The encoding steps of the Shannon Fano Algorithm can be presented in _______ manner. --> Top down
Q) The encoding steps of the Huffman Algorithm are described in _______ manner. --> Bottom up
Q) _______ method attracted an over whelming amount of research and adopted in fax machines, JPEG, and MPEG. --> Huffman Coding.
Q) _______ exploits memory present in the information source. --> RLC (Run-Length Coding)
Q) _______ is one of the best known methods of entropy coding. --> Variable Length
Coding.
Q) In _______ algorithm, statistics are gathered and updated dynamically as the data stream arrives. --> Adaptive Compression
Q) _______ is a procedure for constructing an adaptive Huffman Tree. --> Update Tree
Q) A set of applets for lossless compression that effectively show interactive demonstrations of _______. --> Adaptive Huffman Coding.
Q) The steps invoked in predictive method that is applied on unprocessed original image. --> Forming a differential prediction and encoding
Q) _______ is used in applications such as UNIX Compress, GIF for images, V.42 bits for modems. --> LZW Algorithm (Lempel - Ziv - Welch)
Q) One of the most commonly used compression techniques in Multimedia data Compression is _______. --> Differential Coding
Q) _______ is invoked when the user selects a 100Y. Quality factor in image tool. --> Loss less JPEG
Q) If the data to be compressed lacks any repetitive structure, the chance of using the new codes in the dictionary entire could be now, this will lead to _______. --> Data Expansion
Q) _______ uses fixed length codeword to represent variable length strings of symbols. --> LZW Algorithm (Lempel - Ziv - Welch)
Q) LZW Algorithm (Lempel - Ziv - Welch) is a _______. --> Dictionary - Based Coding
Q) _______ is a more moderns coding method that usually outperforms Huffman Coding in practice. --> Arithmetic Coding
Q) _______ can treat the whole manage as one unit. --> Arithmetic Coding
Q) _______ is able to perform decorrelation of the input signal in a data independent manner. --> Discrete Cosine Transform
Q) For two-dimensional DCT function, we use the basis shown as _______. --> 8 X 8 images
Q) _______ in a reversible linear transform that exploits the statistical properties of the vector representation. --> Karhunen Loeye Transform (KLT)
Q) The length of each interval in uniform scales quantizer is referred to as the _______. --> Step size
Q) In _______ , the input is mapped by a compression function G, and then quantized using a uniform quantizer. --> Companded Quantizer
Q) _______ partitions the domain of input values into equally spaced intervals, except possibly at the two outer intervals. --> Uniform scale quantizer
Q) A midrise is used with an _______ number of output levels. --> Even
Q) _______ quantizer is important when source data represents the zero value by fluctuating between small positive and negative numbers. --> Midtread
Q) The idea behind vector quantization (VQ) is similar to that of scalar quantization but extended into _______. --> Multiple Dimensions
Q) The Discrete Cosine Transform (DCT), is widely used in _______ technique. --> Transform Coding
Q) Without orthogonality, the wavelets for analysis and synthesis are called _______ a weaker condition. --> Biorthogonal
Q) _______ were first introduced by Coifman, Meyer, Quake and Wickerhauser as a family of orthonormal basis for discrete functions of RN. --> Wavelet packets
Q) _______ is a revolutionary extension of the EZW (Embedded zero tree wavelet)
algorithm. --> SPIHT (Set Partitioning In Hierarchical Trees)
Q) The averaging information is formally determined by a kind of dual to the mother wavelet called the __________ function. --> Scaling
Q) ________ algorithm is an effective and computationally efficient technique in image coding. --> Embedded zero tree wavelet
Q) In ________ the coefficient is insignificant but has some significant descendants. --> Isolated zero
Q) ________ wavelets are formed from a mother wavelet, but with scale and shift in discrete steps. --> Discrete
Q) ________ can be viewed as a generalization of wavelets. --> Wavelet packets
Q) The coding of the significance map is achieved using a new data structure called the _________. --> Zero tree
Q) Embedded coding in the EZW coder is achieved using a method called. --> Successive approximation quantization (SAQ)
Q) Video has a resolution of 720 X 480 and a frame rate of 30 fps; also, assume p=15 and N=16. The number of operations needed for each motion vector search is _______. --> 312 X 162 X 3
Q) A chapter version suboptional but still usually effective is called ________. --> Logarithmic search
Q) The difference of the two corresponding macro blocks is the __________. --> Prediction error
Q) The difference between the two macro blocks can then be measured by their __________. --> MAD (Mean Absolute Difference)
Q) The simplest method for finding motion vectors is to sequentially search the whole ________ window in the reference frame. --> (2p+1) X (2p+1)
Q) If the reference frame is taken to be a future frame known as ________. --> Backward prediction
Q) The search for motion vectors can benefit from a ________ approach. --> Hierarchical search
Q) A ________ Consist of a time-ordered sequence of frames images. --> Video
Q) The cost for obtaining a motion vector for a single macroblock is ________. --> O (P2N2)
Q) The displacement of the reference macroblock to largest macroblock is called ________. --> Motion vector
Q) If the reference frame is taken to be a previous frame known as ________. --> Forward prediction
Q) Which of the following one is not a main step of Video compression algorithm. --> Motion reduction
Q) Which of the following one is type of image frame. --> P-frames
Q) ________ layer allows the decoder to seek particular position with in the bitstream and start decoding from there. --> GOP (Group of pictures)
Q) ________ program stream user fixed-length pixels. --> MPEG 2
Q) In motion estimation each macro block of the target P-frame is assigned a best matching macro block from the previously coded I- or P-frame then it is called as --> Prediction
Q) MPEG-1 supports a range of ________ for half pixel precision and ________ for full pixel precision motion vector. --> [-512, 511.5] [-1,024, 1,023]
Q) The Base layer can be better protected or sent via channels known to be ________. --> Noisy connections
Q) Which of the following one is not used by the earlier H.261 standard _____. --> B frame
Q) The MPEG-1 bit stream allows ________ access. --> Random
Q) A GOP (Group of pictures) layer contains one or more pictures, one of which must be ________. --> I - picture (intra-coding)
Q) Each macro block consists of ________ y blocks, ________ Cb block and ________ Cr block. --> 4, 1, 1
Q) MPEG-2 scalable coding is also known as ________. --> Layered coding
Q) The compressed video stream is divided into ________ partitions. --> 2
Q) ________ facilitates a way to support scalable coding. --> Video Object Layer
Q) ________ can have multiple VOLs (Video object layer) under scalable coding or a single VOL under nonscalable coding. --> VO (Video object)
Q) ________ delivers the complete MPEG-4 visual scene, which may contain 2D or 3D natural or synthetic objects. --> VS (Video-object Sequence)
Q) ________ is a snapshot of a VO at a particular moment, reflecting the VO's shape, texture, and motion parameters at that instant. --> VOP (Video object plane)
Q) ________ is a particular object in the scene, which can be arbitrary shape, corresponding to an object. --> Video Object (VO)
Q) ________ groups video object planes. --> Group of video object planes (GOV)
Q) ________ supports a special type of VOL with a shorter header. --> MPEG - 4
Q) ________ is an optional level. --> GOV (Group of object planes)
Q) ________ is an image of arbitrary shape. --> VOP (Video object plane)
Q) A degenerate case in MPEG 4 video coding occurs when the entire rectangular video frame is treated as a ________. --> VOP (Video object plane)
Q) A degenerate case in MPEG - 4 video coding occurs when the entire rectangular video frame is treated as a ________. --> VOP (Video object plane)
Q) Inter - frame - coded VOPs are called ________ if only forward prediction is employed. --> P - VOPs
Q) To encode the binary alpha map more efficiently, the map is divided into ________ blocks. --> 16 X 16
Q) Macroblocks entirely within the VOP are referred to as ________. --> Interior Macroblocks
Q) Many of the Macroblocks straddle the boundary of the VOP and are called ________. --> Boundary Macroblocks
Q) ________ coding also employs the motion compensation technique. --> MPEG - 4 VOP - based
Q) An intra frame - coded VOP is called ________. --> I - VOP
Q) Inter - frame - coded VOPs are called ________ if only bidirectional predictions are employed. --> B - VOPs
Q) Macroblocks entirely outside the VOP are called ________. --> Exterior Macroblocks
Q) ________ refers to gray level (or chroma) variations and/or patterns in the VOP. --> Texture
Q) ________ is applicable, when the texture is used for mapping onto 3D surfaces. --> Static texture coding
Q) ________ replaces VLC (Variable length code) based entropy coding with binary arithmetic coding that uses a different adaptive statistics model for different data types & contexts. --> CABAC (Context Adaptive Binary Arithmetic Coding)
Q) ________ uses a curvature scale space (CSS) representation that is invariant to scale and
rotation, and robust to nonrigid motion and partial occlusion of the shape. --> **Contour-based shape**

Q) ________ is a still image that describes the static background over a sequence of video frames. --> **Sprite parameters**

Q) Instead of directly transmitting the motion parameters, we encode only the displacements of reference points, this is called ________. --> **Trajectory coding**

Q) ________ is a tessellation (or partition) of a 2D planar region using polygonal patches. --> **2D - mesh**

Q) ________ are designed to describe both low-level features of semantic objects, such as events and abstract concepts. --> **MPEG 7 descriptors**

Q) ________ describes the regularity, coarseness, and directionality of edges used to represent and browse homogeneous textures. --> **Texture browsing**

Q) A set of ________ coefficient is used to describe an object's shape. --> **Angular Radial Transform (ART)**

Q) ________ can be specified to better describe individual faces. --> **FDPs (Face Definition Parameters)**

Q) ________ can be specified to achieve desirable animations. --> **Face Animation Parameters (FAPs)**

Q) ________ is a new U.S. federal standard to replace the old LPC - 10 standard with the application focus on low-bitrate communications. --> **MELP (Multi Band Excitation Linear Prediction)**

Q). ________ are specifically voice coders they can't be usually applied when other analog signals are in use. --> **Vocoders**

Q) ________ is the process of applying a bank of band pass filters to the analog signals. --> **Sub band filtering**

Q) ________ Vocoders extract salient features of speech directly from the wave form rather then transforming the signal to the frequency domain. --> **LPC Vocoders (Linear Prediction Coding)**

Q) The G.726 Standard works by adapting a ________ quantizer in a simple way. --> **Fixed**

Q) ________ Vocoders can produce reasonably intelligible speech at only 1,000 bps. --> **Formant Vocoders**

Q) ________ provides end-to-end communication between end systems that support end-user applications or services. --> **Transport layer**

Q) ________ deals with the syntax of transmitted data, such as conversion of different data formats. --> **Presentation layer**

Q) ________ specifies the ways to establish, maintain and terminate a link, such as transmission and synchronization of data frames. --> **Data link layer**

Q) ________ and ________ are two transport layer protocols used in TCP/IP to facilitate host-to-host communications. --> **TCP & UDP**

Q). In ________ carry packet is treated separately and is not related to past or future packets. --> **IP**

Q) ________ defines electrical and mechanical properties of the physical interface. --> **Physical**

Q) ________ defines the routing of data from one end to the other across the network. --> **Network layer**

Q) ________ coordinates interaction between user applications on different hosts, manages
sessions. --> **Session layer**

Q________ supports various application programs and protocols, such as FTP, Telnet, and HTTP. --> **Application layer**

Q________ is connection oriented, provides reliable data transfer between pairs of communicating processes across the network. --> **TCP**

Q________ is a measure of smoothness of the audio/video playback. --> **Jitter**

Q________ is a Moderate latency and jitter, strict ordering and synchronization. --> **Silver**

Q________ is a measure of error rate of the packetized data transmission. --> **Packet loss or error**

Q________ Two-way traffic, low loss and low latency, with prioritized delivery, Such as e-commerce applications. --> **Priority data**

Q________ Two-way traffic, low latency and jitter, possibly with prioritized delivery, such as voice telephony and video telephony --> **Real-time**

Q________ is a measure of transmission speed. --> **Data Rate**

Q________ is the Maximum time needed from transmission to reception. --> **Latency**

Q________ is a measure of multimedia data synchronization. --> **Sync skew**

Q________In scalable Video (such as MPEG 2 and 4) using layered coding, the base layer can give priority than the enhancement layers. --> **Higher**

Q________ is a one way traffic, such as streaming video. --> **Silver**

Q________ was designed to help the maintains of multicast groups. --> **Internet Group Management Protocol (IGMP)**

Q________ was developed to guarantee desirable Qos (Quality of service), mostly for multicast, although it is also applicable to uni cast. --> **Resource ReSerVation Protocol (RSVP)**

Q________ is a standard for packet based multimedia communication service over networks that do not provide a guaranteed Qos (Quality of service). --> **H.323**

Q________ enables multicast on the Internet. --> **IP multicast**

Q________ supports route aggregation and hierarchical routing. --> **Reliable Multicast Transport Protocol (RMTTP)**

Q________ is designed for the transport of real-time data, such as audio and video streams. --> **RTP (Real-time Transport Protocol)**

Q________ is for communication between a client and stored media server. --> **RTSP**

Q________ is a set of protocol for internet resource reservation. --> **RSVP (Resource ReSerVation Protocol)**

Q________ relies on copper wires carrying analog voice signals. --> **Internet Telephony**

Q________ message is sent to only one node. --> **Uni cast**

Q________ message is sent to set of specified nodes. --> **Multi cast**

Q________ is vital for applications such as mailing lists, bulletin boards, group file t transfer etc. --> **IP multicast**

Q________ is a compression protocol of RTP. --> **RTCP (Real-time Control Transport Protocol)**

Q________ is an application layer control protocol in change of establishing and terminating sessions in Internet telephony. --> **Session initiation Protocol (SIP)**

Q________ is a call control protocol, including signaling, representation, admissions, packetization and synchronization of media streams. --> **H.225**
Q)__________ is the most commonly used video bitrate for compressed video. --> Variable Bit Rate
Q)__________ converts various formats of user data into ATM datastreams and vice versa. --> AAL (ATM Adaptation Layer)
Q)__________ was intended for variable bitrate (VBR) compressed video and audio. --> AAL type 2
Q)__________ provides no guarantee on any quality parameter. --> Unspecified Bit Rate
Q)__________ was the new protocol produced for multimedia data transmission. --> AAL type 5
Q)__________ translates the application's request into specific protocol messages, to be transported though one of the three types of mediums. --> DMIF Application Interface (DAI)
Q)A variation of stream merging is __________ in which the play back rate of the streams is slightly and dynamically adjusted. --> Pissy backing
Q)__________ defines a mapping between logical MPEG 4 SL packets RTP packets. --> Generic RTP payload format
Q)__________ is a multimedia system based on the television sets in homes. --> DAI
Q)__________ schemes broadcast video using a small no. of high band width streams. --> Pyramid broadcast
Q)__________ is an interface between multimedia applications and their transport. --> DMIF (Delivery Multimedia Integration Framework)
Q)__________ supports interactive network access, broadcast media and local media on disks. --> DMIF (Delivery Multimedia Integration Framework)
Q)When the delivery through a network we need __________. --> DMIF (Delivery Multimedia Integration Framework)
Q)__________ maps Flex MUX packetized streams to RTP packets. --> Flex MUX payload format
Q)__________ involves many fundamentals multimedia network communication issues. --> Media - On - Demand (MOD)