INJNTU.COM INJNTU.COM

Code No: R1631022

R16

SET - 1

III B. Tech I Semester Supplementary Examinations, May - 2019 RENEWABLE ENERGY SOURCES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer **ALL** the question in **Part-A**

3. Answer any FOUR Questions from Part-B

		PART –A	
1.	a)	Define the terms: i) Altitude angle ii) Incident angle	[2M]
	b)	What is the principle collection of solar energy used in a non-convective solar pond?	[2M]
	c)	Show that a wavelength of $\lambda = 1$ µm solar radiation corresponds to an energy of 1.24 eV. Give all assumptions made.	[2M]
	d)	Define the power coefficient of a wind turbine .What usually is the maximum value of this parameter?	[3M]
	e)	Sea waves are irregular in amplitude. How significant wave height is defined?	[3M]
	f)	What are the techniques suggested for maintaining bio-gas production?	[2M]
		PART -B	
2.	a)	Explain in detail, the solar radiation on tilted surfaces.	[7M]
	b)	Calculate the angle made by the beam radiation with the normal to a flat collector on Dec 1, at 9:00 A.M. solar time for a location at $28^{0}35$ 'N. The collector is tilted at an angle of latitude plus 10^{0} , with the horizontal and is pointing due south.	[7M]
3.	a) b)	How solar collectors are classified? What are the main applications of a drier? Data for a flat plate collector used for heating the building are given below Factor Specification Location and latitude Baroda 22 ⁰ 00°N Day and time Jan 1,11.30 to12.30(IST) Annual average intensity of solar radiation Collector tilt latitude+ 15 ⁰ Number of glass cover Heat removal factor for collector Transmittance of glass Absorptance of the plat U _L for collector Collector fluid temperature Ambient temperature Calcualte	[7M] [7M]
		i) Solar attitude angle ii) Incident angle iii) Collector efficiency	

INJNTU.COM INJNTU.COM

Code No: R1631022 (R16) (SET - 1

4. a) Discuss the step-by-step procedure to execute P & O algorithm for tracking the maximum power from the sun. [7M]

- b) What is the implication of cell mismatch in a solar module? [7M]
- 5. a) Describe with a neat sketch the working of a wind energy system with main components?
 - b) Write short notes on applications of wind energy. [7M]
- 6. a) What are the advantages and limitations of small scale hydro electric power [7M] generation?
 - b) A tidal power plant of the simple single basin type has a basin area of $30x10^6$ [7M] m². The tide has a range of 12m. The turbine, however, stops operating when the head on it falls below 3m. Calculate the energy generated in 1 filling (or emptying) process in kWh if the turbine generator efficiency is 0.73.
- 7. a) Describe the classification of fuel cell. With a neat sketch explain the working of fuel cell
 - b) What is meant by anaerobic digestion? What are the factors that effect biodigestion? Explain briefly. [7M]
