III B. Tech II Semester Regular Examinations, April/May - 2019
 DATA STRUCTURES

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Define data structure.
b) What is a double-ended-queue?
c) What is a self referential structure? Give an example.
d) Discuss the role of mid element in binary search.
e) Construct the graph whose adjacency matrix is given below and also analyze its properties.
A
A
A
B
$C$$\left[\begin{array}{llllll}0 & 1 & 0 & D & E & F \\ D & 0 & 1 & 0 & 0 & 1 \\ D \\ E & 1 & 0 & 1 & 1 & 0 \\ F & 0 & 0 & 1 & 0 & 0 \\ 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0\end{array}\right]$
f) Present the time complexity of merge sort in different cases.

PART -B

2. a) Explain about different notations for time complexity and space complexity of algorithms.
b) Write a C program to traverse an array in reverse order.
3. a) Discuss the role of stacks in executing recursive procedures.
b) What is a priority queue? Explain different methods of implementing them.
4. a) Write a C function to implement insert operation in a circular linked list.
b) Explain with an example, how linked lists can be used for sparse matrix representation and computations.
5. a) What is a threaded binary tree? Discuss its advantages and limitations.
b) Insert the sequence of integers $13,3,4,12,14,10,5,1,8,2,7,9,11,6$ and 18 in an initially empty Binary Search Tree. Then delete 5 and 1. (Present the operations one after the other in the same order).

1 of 2

6. a) Compute shortest paths between every pair of vertices in the graph below using appropriate algorithm.

b) Write notes on basic operations performed on graphs and challenges involved.
7. a) Write and explain Fibonacci Search algorithm.
b) Sort the below list of elements in ascending order using heap sort: $6,8,7,9,1,4,3,2,5,0$.

SET-2

III B. Tech II Semester Regular Examinations, April/May - 2019
 DATA STRUCTURES

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Give the syntax for declaring a 3-dimensional array.
b) Write brief notes on polish notation.
c) What is a spare matrix? Give an example.
d) What are balanced binary trees? Why it is needed to balance binary trees?
e) Define the terms: simple graph, directed graph and connected graph.
f) What is stable sorting? Give an example.

PART -B

2. a) Write about the classification of data structures.
b) Explain about different operations in String ADT.
3. a) Write an algorithm/program that gives solution for Towers of Hanoi problem with n disks.
b) With array representation, explain the basic queue operations.
4. a) Write a C program to traverse a given single linked list in reverse order.
b) Explain with an example, how linked lists can be used for polynomial [7M] representation.
5. a) Discuss about different representations of binary trees. Give an example for each.
b) Insert the sequence of integers $10,20,30,40,50,60,70,80$ and 90 in an initially empty B-Tree. Then delete 40 and 70. (Present the operations one after the other.)
6. a) Differentiate between BFS and DFS with algorithms and examples.
b) Compute minimum cost spanning tree for the graph below using Prim's algorithm:

7. a) Write and explain Binary Search algorithm. Also mention its time complexity.
b) Sort the below list of elements in ascending order using quick sort:

$$
29,23,17,57,34,89,65,27 .
$$

III B. Tech II Semester Regular Examinations, April/May - 2019
 DATA STRUCTURES

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) List different operations that can be performed on an array.
b) What is a queue data structure?
c) Write C structure to declare node of a double-linked list.
d) Define the terms: root, leaf and siblings with respect to trees.
e) List some real world applications of directed, undirected and hybrid graphs.
f) Present the time complexity of quick sort in different cases.

PART - B

2. a) With a neat sketch, explain the model of ADT.
b) Explain how linear arrays are stored and traversed.
3. a) Explain how postfix expressions are evaluated using stacks. Give an example.
b) Differentiate between regular queues and circular queues with insert and delete operations.
4. a) Discuss the advantages and limitations of linked lists.
b) Write a C program to implement queues using linked lists.
5. a) Write recursive functions for inorder, preorder and postorder traversal in a binary tree.
b) Construct a max heap from the sequence of integers $13,3,4,12,14,10,5,1,8,2,7$,
$9,11,6$ and 18. Then delete 2 minimum elements. (Present the operations one after the other in the same order.)
6. a) What is transitive closure? Compute transitive closure of the graph given below, using Warshall's algorithm:

b) Write and explain Kruskal's algorithm for finding minimum cost spanning tree of a graph.
7. a) Give a comparison between several searching techniques.
b) Write and explain iterative merge sort algorithm, with an example.

SET - 4

III B. Tech II Semester Regular Examinations, April/May - 2019
 DATA STRUCTURES

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) What is the key difference between strings and regular arrays?
b) What is a stack data structure?
c) Define a header linked list.
d) What is a complete binary tree?
e) What is a biconnected component?
f) What are the limitations of binary search?

PART -B

2. a) List and explain different operations performed on data structures.
b) Write a C program to add two matrices, using multidimensional arrays.
3. a) Explain how an infix expression can be converted into postfix expression, using stacks. Give an example.
b) Write and explain the queue ADT .
4. a) Differentiate between arrays and linked lists.
b) Write a C program to implement stacks using linked lists, doubly and circular linked lists.
5. a) Explain the procedure for deletion of an element from a binary search tree.
b) Present the preorder, inorder and postorder traversal of the below binary tree:

6. a) Explain about yarious graph representations. Discuss the pros and cons of each.
b) Using Dijkstra's algorithm, find shortest paths from vertex 0 to remaining vertices in the graph given below.

7. a) What is hashing? Explain its role, advantages and disadvantages w.r.to searching.
b) Sort the below list of elements in ascending order using shell sort:
